5 research outputs found

    Alternative method for the metrological characterization of spur gears in the sub-millimeter range using optical equipment

    Get PDF
    The aim of this work is to develop a software that allows the inspection of spur gear manufactured in the sub-millimeter range. The measurements are made using a digital optical machine and using an analysis proprietary software implemented in Matlab®, which is able to handle images, captured using the digital optical machine. The software allows to evaluate the profile and pitch deviations as establish in the ISO/TR 10064-1:1992 standar

    A proposal for the metrological characterization of circular features with digital optical machines

    Get PDF
    This paper aims to analyze the different adjustment methods commonly used to characterize indirect metrology circular features: least square circle, minimum zone circle, maximum inscribed circle and minimum circumscribed circle. The analysis was performed from images obtained by digital optical machines. The calculation algorithms, self-developed, have been implemented in Matlab® and take into consideration as study variables: the amplitude of angular sector of the circular feature, its nominal radio and the magnification used by the optical machine. Under different conditions, it was determined the radius and circularity error of different circular standards. The comparison of the results, obtained by the different methods of adjustments used, with certified values for the standards, has allowed us to determine the accuracy of each method and its scope

    Caracterización geométrica de huellas de dureza Brinell mediante equipos ópticos. Modelo con microscopía confocal

    Full text link
    En esta tesis se desarrolla una metodología alternativa para la determinación de la dureza Brinell a partir de imágenes obtenidas mediante microscopía confocal, que se ha mostrado robusta para mejorar los resultados de medición del diámetro en condiciones de reproducibilidad. Las validaciones realizadas evidencian su posibilidad real de implementación, especialmente para la certificación de patrones de dureza. Los estudios experimentales realizados ponen de manifiesto que la medición del diámetro de una huella de dureza Brinell, siguiendo la metodología tradicional, depende de la posición del patrón, de las características del equipo empleado y del propio operador. Dicha medida resulta crítica y las dificultades para identificar el borde de la huella incorporan a menudo una fuente adicional de incertidumbre difícil de soslayar. En esta investigación se han desarrollado dos modelos matemáticos que permiten identificar de forma unívoca el diámetro de la huella en el punto donde se produce el límite de contacto entre el indentador y el material de la probeta durante la realización del ensayo. Ambos modelos han sido implementados en Matlab® y se ha verificado su validez mediante datos sintéticos. Asimismo, se ha realizado una validación experimental sobre patrones de dureza certificados, empleando un microscopio confocal marca Leica, modelo DCM 3D disponible en el Laboratorio de Investigación de Materiales de Interés Tecnológico (LIMIT) de la Escuela Técnica Superior de Ingeniería y Diseño Industrial de la Universidad Politécnica de Madrid (ETSIDI – UPM). Dicha validación ha puesto de manifiesto la utilidad de esta nueva metodología por cuanto permite caracterizar las huellas, estimar las incertidumbres de medida y garantizar la trazabilidad metrológica de los resultados. ABSTRACT This PhD thesis presents an alternative methodology to determine the Brinell hardness from the images obtained by confocal microscopy that has proved to be robust to improve the results of indentation diameter measurements in reproducibility conditions. The validations carried out show the real possibility of its implementation, especially for calibration of hardness reference blocks. Experimental studies performed worldwide show that the measurement of the indentation diameter in a Brinell hardness test depends, when the traditional methodology is applied, on the position of the test block, the equipment characteristics and the operator. This measurement is critical and the difficulties to identify the edge of the indentation often bring an additional source of uncertainty with them that is hard to avoid. In this research two specific mathematical models have been developed to identify unambiguously the indentation diameter at the point where the edge of the boundary between the indenter and the test block is found during the test. Both models have been implemented on Matlab® and their validity has been verified by synthetic data An additional experimental validation with calibrated hardness reference blocks has been carried out using a Leica-brand confocal microscope, model DCM 3D, available in the Laboratory for Research on Materials of Technological Interest (LIMIT in its Spanish acronym) of the Escuela Técnica Superior de Ingeniería y Diseño Industrial de la Universidad Politécnica de Madrid (ETSIDI-UPM). This validation has shown the utility of this new methodology since it allows to characterize the indentation, to estimate the measurement uncertainties and to ensure the metrological traceability of the results

    Considerations to the hardness Brinell measurement using optical equipment

    Full text link
    A comparison of the results obtained applying the traditional methodology to measure the Brinell hardness value with different optical equipment has been performed. The results show that the measurements on Brinell hardness indentation give neither satisfactory results, nor reproducibility nor precision with respect to certificated values. The fundamental reason is the lack of definition on the indentation edge, where the Brinell indentation diameter should be measured. This causes a high dispersion of the diameters measured with different instruments, operators or measurement parameters. In this work, we propose an alternative measurement methodology using confocal microscopy, which allows to determine a unique indentation edge. This methodology is of high interest for certification of hardness reference blocks because the results are independent of the measuring instrument and the operator

    Bayesian model for subpixel uncertainty determination in optical measurements

    Full text link
    Uncertainty determination can be obtained by two procedures: GUM and the Monte Carlo Method. This work presents a model that helps to evaluate the uncertainty in measurements collected by optical measuring machines when using the Monte Carlo method. Initially, the model converts intensity, using Bayesian probability, from the pixel image derived from camera into a polygonal area with three to five vertexes. The outer vertexes are fitted using least squares procedures to obtain a measurand shape approximation in a subpixel range. Algorithms have been programmed and verified into Matlab using synthetic images with different triangles. Through a detailed analysis, the usefulness of a new tool, the parameter, will be demonstrated as an alternative method for estimating uncertainty of measurements of pixel images
    corecore